Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in
Chemistry (4CH1)
Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4CH1_1CR_msc_20200305
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	C Neutron The only correct answer is C because the nucleus contains protons and neutrons. Protons are identified as the white dots A is not correct because electrons occur in the shells B is not correct because a molecule is not a particle found in the nucleus D is not correct because the nucleus contains protons and neutrons		1
(b)	A Electron The only correct answer is A because electrons have a relative mass of $1 / 1836$ compared to a proton or a neutron B is not correct because a neutron has a relative mass of 1 C in not correct because the nucleus contains 4 protons and 5 neutrons D is not correct because a proton has a relative mass of 1		1
(c)	C 9 The only correct answer is C because the mass number is the sum of the protons and neutrons A is not correct because the atomic number is 4 B is not correct because 5 is the number of neutrons D is not correct because 13 is the total number of protons, neutrons and electrons		1
(d)	A 4 The only correct answer is A because the atomic number is equal to the number of protons which is 4 B is not correct because 5 is the number of neutrons C is not correct because 9 is the total number of particles in the nucleus D is not correct because 13 is the total number of protons, neutrons and electrons		1
(e) (i)	beryllium/Be		1
(ii)	(positive) ion	ALLOW ecf from the element given in (e)(i) ACCEPT any positive beryllium ion (or other ecf ion) REJECT any negative ion	1

Question number	Answer	Notes	Marks
2 (a) (i)	Particles should be close together and should fill from the bottom of the box, some particles should touch	ALLOW particles filling the whole box IGNORE the size of the particles REJECT a regular arrangement	1
(ii)	Gas	ALLOW gaseous	1
(c)	M1 (water evaporates) I to g (crystals of iodine sublime) s to g M3 (ice melts) s to I	M1 (particles / molecules have) more energy M2 and M3	ALLOW water has more energy ALLOW (particles / molecules have) move faster IGNORE vibrate more
	M2 to overcome / break the forces (between water molecules)	ALLOW to overcome / break the bonds (between water molecules) OR to break away from one another OR so escape more easily	

Question number	Answer	Notes	Marks
3 (a)	$\begin{aligned} & \text { Most } Z_{2} \\ & Y_{2} \\ & \text { Least } X_{2} \end{aligned}$	ALLOW Z Y X ALLOW lower case letters IGNORE size of number IGNORE any names given	1
(b)	bromine	ALLOW bromine water OR bromine solution / $\mathrm{Br} / \mathrm{Br}_{2}$ REJECT bromide	1
(c) (i)	(Fluorine) gas / vapour (chlorine) range between $-150^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ inclusive (Astatine) dark grey / black	REJECT blue-black	3
(c) (ii)	C - the halogens have the same number of outer shell electrons. The only correct answer is C because the halogens are in group 7 and have similar reactions because they have the same number of electrons in their outer shells. A is not correct because the fact halogens are nonmetals does not make them react in a similar way. B is not correct because the fact halogens are molecules does not make them react in a similar way. D is not correct because elements in the same period have different numbers of outer shell electrons and react differently.		1
(d)(i)	Chlorine is toxic / poisonous	IGNORE harmful / dangerous / irritant IGNORE any reference to products	1
(d)(ii)	$\mathrm{M1} \mathrm{FeCl}_{3}$ M2 $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ M2 rest of the equation balanced	ALLOW correct charges on the ions REJECT incorrect capitals REJECT large or superscript 3 ALLOW multiples or fractions for M2 M2 dep on M1	2

Question number	Answer	Notes	Marks
4 (a)	NH_{4}^{+}	ALLOW NH ${ }^{+1}$ and $\mathrm{NH}_{4}{ }^{1+}$	1
(b)	M1 add sodium hydroxide solution (and warm) M2 (test the gas with damp) red litmus M3 turns blue OR M2 expose the gas to concentrated hydrochloric acid M3 white smoke produced	ALLOW (test the gas with damp) universal indicator If universal indicator is used allow blue / purple for M3 M3 dep on litmus or universal indicator in M2 If sodium hydroxide solution is not added $\max =1$	3
(c)	(the reaction is) reversible	ACCEPT reaction that goes both ways / both forwards and backwards reactions occur IGNORE references to equilibrium	1
(d)(i)	M1 (molecules / particles of) ammonia move / diffuse faster M2 because the ammonium chloride forms near(er) to the HCl OR because the ammonia has travelled further (in the same time)	IGNORE references to the masses / sizes of the particles	2
(d)(ii)	Any two from: M1 (gas particles) move in random directions / don't travel in straight lines OWTTE M2 (gas particles) collide with air / other particles M3 (gas particles) collide with the walls / sides (of the tube) OWTTE	ALLOW air / other particles slow them down IGNORE any references to rate of reaction / collisions	2

Question number	Answer	Notes	Marks
5 (a)	Results are the same at the end	ALLOW there is a constant volume in the tube ALLOW the volume of gas stops decreasing ALLOW no change after 4 / 5 minutes IGNORE references to time REJECT the volume of gas stops increasing	1
(b)	(use a glass tube / scale with) smaller divisions.	ALLOW use a glass tube / scale with $0.1 \mathrm{~cm}^{3}$ divisions ALLOW use a smaller scale IGNORE references to repeating the experiment IGNORE references to temperature	1
(c)	M1 Volume of oxygen $=11.5\left(\mathrm{~cm}^{3}\right)$ $\text { M2 }(11.5 \div 48.5) \times 100$ M3 23.7\%	Correct answer to 1 dp with or without working scores 3 ALLOW ecf from M1 M3 must be to 1dp	3

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
6 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
magnesium is more reactive than copper \\
magnesium sulfate + copper
\end{tabular} \& \begin{tabular}{l}
ALLOW magnesium can displace copper ALLOW magnesium is higher than copper in the reactivity series REJECT magnesium is more reactive than copper(II) or \(\mathrm{Cu}^{2+}\) or copper sulfate \\
Both are required for the mark. Either order. \\
REJECT copper(II) \\
IGNORE any chemical formulae given
\end{tabular} \& 1

1

\hline (b) (i) \& M1 Temperature rise $=36.1\left({ }^{\circ} \mathrm{C}\right)$

\[
M2 15 162J

\] \& | Correct answer with or without working scores 2 |
| :--- |
| ALLOW ecf from M1 ALLOW 2 or more significant figures IGNORE negative sign | \& 2

\hline \multirow[t]{3}{*}{(ii)} \& An explanation that links any two of the following points \& \& 2

\hline \& M1 polystyrene is an insulator \& | ALLOW polystyrene is not a (good) conductor of heat |
| :--- |
| ALLOW polystyrene is a poor conductor of heat | \&

\hline \& | M2 (so) reduces heat loss (to the surroundings) OWTTE |
| :--- |
| M3 temperature rise/change/reading will be closer to true value OWTTE | \& | ALLOW prevents heat loss ALLOW keeps heat in |
| :--- |
| ALLOW temperature rise/change/reading will be more accurate/valid | \&

\hline
\end{tabular}

(c)(i)	M1 calculate the amount, in moles, of zinc M2 divide Q by the amount in moles M3 give the answer to three significant figures with a - sign Example calculation M1 $0.500 \div 65$ OR 0.00769 M2 $1.67 \div 0.00769$ OR $217(\mathrm{~kJ} / \mathrm{mol})$ M3-217 (kJ/mol) OR M1 $1.67 \div 0.5$ OR $3.34 \mathrm{~kJ} / \mathrm{g}$) M2 3.34×65 OR 217 (kJ/mol) M3-217 (kJ/mol)	M2 subsumes M1 Correct answer of -217 with or without working scores 3 marks. Allow ECF throughout	3
(c)(ii)	M1 zinc is oxidised and Cu^{2+} is reduced M2 Zinc loses electrons M3 Cu ${ }^{2+}$ gains electrons	ALLOW zinc is oxidised and copper(sulfate) is reduced in M1 ALLOW oxidation and reduction occur ALLOW references to changes in oxidation number for M2 and M3 Must mention copper ions for M3	3

Question number	Answer	Notes	Marks
$7 \quad \text { (a) }$ (ii)	Measuring cylinder / burette / (volumetric) pipette Neutralisation	ACCEPT exothermic IGNORE base or alkali	1 1
(b) (i) (ii) (iii)	12.4 $15 \mathrm{~cm}^{3}$ - red/orange $30 \mathrm{~cm}^{3}$ - blue/purple $\mathrm{OH}^{-} /$hydroxide (ion)	REJECT OH	1 2 1
(c)	M1 the reaction is exothermic (therefore the temperature rises) M2 (after $25 \mathrm{~cm}^{3}$ of sodium hydroxide) the reaction is complete OWTTE M3 so adding more sodium hydroxide / liquid / solution cools the mixture down	ALLOW the reaction gives out heat (energy) or thermal energy IGNORE energy alone ALLOW (after $25 \mathrm{~cm}^{3}$ of sodium hydroxide) neutralisation happens ALLOW so no more heat (energy) or thermal energy is given out OWTTE IGNORE energy alone	3

Question number	Answer	Notes	Marks
8 (a)	M1 calcium loses electrons M2 chlorine gains electrons M3 two atoms of chlorine each gain one electron OR M3 calcium loses 2 electrons and chlorine gains 1 electron	IGNORE references to redox Allow 1 mark from M1 and $\mathbf{M 2}$ for electron transfer from chlorine to calcium If chlorine molecules are gaining electrons do not award M3 Any reference to sharing electrons or covalent or metallic bonding scores 0	3
(b)	(test for Ca^{2+} ions) M1 flame test (allow description of a flame test) M2 orange-red flame colour (test for Cl^{-}ions) M3 add silver nitrate M4 white precipitate	ALLOW brick-red IGNORE orange / red alone M2 dep on M1 ALLOW M1 add sodium hydroxide ALLOW M2 (slight) white precipitate (reject precipitate dissolves in excess sodium hydroxide) IGNORE reference to nitric acid REJECT hydrochloric acid or sulfuric acid M4 dep on silver nitrate in M3	4

(c)(i)	M1 and M2 all points correct \pm half a square M3 2 straight lines of best fit ignoring the anomalous point	One plotting error scores M1	3
(c) (ii)	the conductivity is (directly) proportional (to the number of spatulas of calcium chloride added) OR the conductivity increases (as the number of spatulas of calcium chloride increases)		1
(iii)	Any one from: M1 The student took the reading before adding the calcium chloride M2 The student forgot to stir the mixture OR did not stir the mixture properly	IGNORE any references to human error	1
(d)	M1 Heat (the calcium chloride) M2 until molten / melts	IGNORE references to electrons / ions	2

Question number	Answer	Notes	Marks
9 (a) (i) (ii)	M1 (Empirical formula) CH_{2} M2 (General formula) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$ Any two from: M1 each member differs from the next by a CH_{2} group OWTTE M2 (each member has) same functional group M3 (each member has) similar/same chemical properties / similar/same (chemical) reactions M4 trend in physical properties (between successive members)	ALLOW sub and super script numbers for M1 and M2 ALLOW letters other than n ALLOW capital letters ACCEPT react in similar/same way ACCEPT named physical property, e.g. boiling point REJECT similar/same physical properties	2
(b) (i) (ii)	addition (ii) Complete the equation for the polymerisation of ethene. M1 Single bond between the two carbons, 4 hydrogens joined by single bonds M2 trailing bonds through the brackets and the n to the right	ALLOW additional REJECT condensation ALLOW n in any position outside the bracket to the right of the structure. ALLOW capital N	1 2
(iii)	Any 5 points from: M1 Poly(ethene) is cheaper than polymers from corn starch M2 Poly(ethene) is stronger than polymers from corn starch M3 Poly(ethene) frees up land to grow food crops	If only advantages or disadvantages given, max 3 marks IGNORE durable	5

	M4 Poly(ethene) comes from (cracking of certain fractions from) crude oil M5 Poly(ethene) is non-renewable OR ethene is a finite source M6 Poly(ethene) is inert M7 poly(ethene) is non-biodegradable M8 poly(ethene) takes longer to decompose M9 Disposal of poly(ethene) is a problem (in landfill) M10 Poly(ethene) causes problems with litter M11 Burning poly(ethene) (could) create toxic fumes / greenhouse gases		
(c)		Must show every bond. IGNORE bond angles IGNORE n IGNORE brackets REJECT trailing bonds	1

Question number	Answer	Notes	Marks
10 (a) (i) (ii)	M1 four electrons between the carbon and each oxygen M2 rest of molecule correct M1 shared pair(s) of electrons M2 attracted to (two) nuclei	M2 dep on M1 REJECT nucleus. Must be plural for M2. M2 dep on mention of electrons in M1	2
(b) (i)	M1 Graphite has delocalised electrons M2 (delocalised electron(s)) can move or flow (throughout the structure)	IGNORE sea of electrons IGNORE free electrons IGNORE number of electrons IGNORE references to carrying a charge or current IGNORE references to layers M2 dep on mentioning electrons in M1 Any mention of ions scores 0	2
(ii)	M1 (diamond) giant covalent	ALLOW macromolecular ALLOW giant structure if M2 is scored IGNORE tetrahedral structure REJECT molecules of diamond	5
	M2 (in melting diamond) covalent bonds are broken M3 (C_{60}) (simple) molecular structure	ALLOW description of covalent bonds ALLOW molecules of C_{60}	
	M4 (in melting C_{60}) intermolecular forces (of attraction) are overcome M5 more energy is needed to break covalent bonds (in diamond) than intermolecular forces (in C_{60})	ALLOW strong covalent bonds and weak intermolecular forces (or attraction)	

ACCEPT breaking bonds in C_{60} if intermolecular forces clearly
mentioned
Mention of
intermolecular forces in diamond no M2 or M5

Mention of breaking covalent bonds in C_{60} no M4 or M5

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 11 (a) \& \begin{tabular}{l}
\[
4 \mathrm{CuO}(\mathrm{~s})+\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow 4 \mathrm{Cu}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l} / \mathrm{g})
\] \\
M1 correct balancing \\
M2 correct state symbols
\end{tabular} \& ALLOW multiples and fractions \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 Mass copper 3.18 g and mass oxygen 0.40 g \\
M2 Moles copper \(=3.18 / 63.5\) OR 0.0500 moles \\
M3 Moles oxygen \(=0.40 / 16\) OR 0.025 moles \\
M4 Ratio of moles \(\mathrm{Cu}: \mathrm{O}\) is \(2: 1\) \\
Any one from: \\
M1 Use a safety screen \\
M2 Position the class some distance from the apparatus \\
M3 Do the experiment in a fume cupboard \\
M4 Set fire to the (excess) methane gas straight away
\end{tabular} \& \begin{tabular}{l}
M2 and M3 allow ecf from M1 \\
M4 is dep on M2 and M3 \\
ALLOW tie hair back \\
ALLOW wear heat-proof gloves
\end{tabular} \& 4

1

\hline | (c)(i) |
| :--- |
| (ii) | \& | (Iron (III) oxide) loses oxygen |
| :--- |
| Carbon monoxide is poisonous / toxic OR carbon monoxide reduces the ability of the blood to carry oxygen | \& | ALLOW iron loses oxygen IGNORE any reference to electrons. |
| :--- |
| ALLOW carbon monoxide binds to haemoglobin in the blood | \& 1

1

\hline
\end{tabular}

(iii)	- calculate Mr_{r} of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ - calculate the amount, in moles, of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ - calculate the amount, in moles, of Fe - calculate the mass in tonnes of Fe Example calculation M1 Mr_{r} of $\mathrm{Fe}_{2} \mathrm{O}_{3}=160$ M2 $n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=30.0 \times 10^{6} \div 160$ OR 187,500 moles M3 $n(F e)=187,500 \times 2$ OR 375,000 moles M4 375,000 x $56=21$ tonnes	Correct answer of 21 tonnes scores 4 marks with or without working ALLOW ecf from M1 (incorrect M_{r}) ALLOW working in megamoles ALLOW ecf from M1 ALLOW working in megamoles ALLOW ECF from M2 ALLOW ecf from M3	4
(iv)	M1 840,000g is 70,000 moles of carbon M2 therefore need 23,333 moles $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (but we have 25,000 which is an excess) OR M1 Need 75,000 moles carbon M2 900,000g of carbon is needed (and have $840,000 \mathrm{~g}$ of carbon so iron(III) oxide is in excess as carbon is the limiting reactant) OR M1 need 75,000 moles of carbon M2 have $840,000 \div 12$ OR 70,000 moles of carbon (so iron(III) oxide is in excess as carbon is the limiting reactant)		2

